
Replacing DDS with Apache Kafka as middleware technology
for the Rubin Observatory Control System

Tiago Ribeiro1, Russell E. Owen2, David J. Mills1, Michael A. Reuter1, Andy W. Clements1,
and William O’Mullane3

1Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA
2University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA

3Vera C. Rubin Observatory, Avenida Juan Cisternas #1500, La Serena, Chile

June 25, 2024

ABSTRACT
Once in operation, the Vera C. Rubin Observatory will execute a 10-year-long survey of the Southern sky known
as the Legacy Survey of Space and Time (LSST). The Rubin Observatory Control System (Rubin-OCS) is a
distributed system with each component in charge of a particular sub-system e.g.; the mount, the M1M3 mirror
support system, etc. Each component is designed as an independent part of the system and they must work
together during operations. Communication between the components is done by means of a software middleware.

The software middleware is the backbone of the system, allowing components to communicate with each
other in a seamless way. The highly distributed nature of the Rubin-OCS places tight constraints in terms of
latency, availability, and reliability for the middleware. The baseline implementation of the Rubin-OCS adopts
the Data Distribution Service (DDS) technology for the middleware.

In the Rubin-OCS, the middleware is encapsulated with a layer of abstraction known as the Service Abstrac-
tion Layer (SAL), which currently uses the ADLink-OpenSpliceDDS implementation of the Data Distribution
Service (DDS) message passing system.

Recently we performed a study of using Apache Kafka to replace DDS as the middleware technology for
the Rubin-OCS. This study was motivated by the middleware-related challenges we faced while integrating the
system as well as the recent announcements indicating that the adopted library may be deprecated during the
lifespan of the project. The study involved throughput and latency studies and a proof of concept of our core
libraries. Overall Kafka proved to be a suitable replacement for DDS.

Keywords: Vera C. Rubin Observatory, observatory control, middleware, Kafka, Data Distribution Service,
DDS

1. INTRODUCTION
Middleware typically denotes software applications utilized for enabling communication in parallel and distributed
computing.1 This technology became popular with the advent of distributed systems, which come as a solution
to the problem of parallel computation. As the complexity of software and hardware systems increase, it becomes
impractical to develop and execute single processes on a single node. Hence, software evolved from monolithic
applications, where a single program executes in a single process or node, to distributed applications, where the
system is divided into a number of smaller applications; each running as their own process possibly on their own
node. For these applications to work together coherently they must be able to communicate with each other,
thus giving origin to middleware technologies.

How a distributed system is broken down into smaller pieces is heavily dependent upon the problem. Some
systems are only broken down into a small number of components each still in charge of large contexts, others are

Further author information: (Send correspondence to T.R.)
T.R.: E-mail: tribeiro@lsst.org, Telephone: 1 520 589 3669



broken down into many small applications that are in charge only of small simple tasks. The latter has gained
substantial popularity recently and is commonly referred to as microservice architecture. This architecture is
behind many popular large services in use today like those from Google and Amazon.

The architecture of distributed systems can take many shapes and forms. For instance, some systems are
designed to emulate monolithic applications. The application is composed of a number of smaller applications
but there is a hierarchical organization, with components at the top, in charge of communicating and operating
components at the bottom. The advantage of these systems is that they are easier to understand and to maintain.
Since each component is isolated from the rest of the system, and only communicates with a components on the
top and bottom of the hierarchical chain, adding new components is relatively easy and have minimal impact
in the system. The disadvantage is that the system is more vulnerable to outages, if a component on the top of
the hierarchical chain becomes unavailable those components at the bottom also become unavailable.

More modern distributed systems have favor less hierarchical approaches, following the principles of reactive
systems. In these systems each component is designed as an independent entity that reacts to input data, be it
from other components or external data services. Since these systems are designed with separation of concerns in
mind (e.g. each component must be able to act independently), reactive systems are usually extremely resilient.
If one component becomes unavailable, the others are expected to continue to operate, taking precautions to deal
with the missing agent. At the same time, it can become quite burdensome to update and grow these systems
as their complexity increases exponentially with the number of different components.

In any case, the middleware plays a crucial role in any kind of distributed system, acting as the glue that
binds the system together.

The Vera C. Rubin Observatory2 Control System (Rubin-OCS) is designed following the principles of a
distributed, reactive architecture. The system is composed of a number of independent components that work
together to execute cohesive operations. The middleware is encapsulated in the Service Abstraction Layer
(SAL), which currently uses the ADLink-OpenSpliceDDS implementation of the Data Distribution Service (DDS)
message passing system.3,4 Like similar projects before us,5 we experienced considerable challenges with DDS
while rolling out the system into production. While we were able to resolve the majority of those issues by fine
tuning ADLink-OpenSpliceDDS configuration, a number of recurrent issues still remain, which are hard to track
down and resolve due to their non-repeatable nature. However, one of the most critical aspects, that inspired us
to look for a replacement is that the adopted library is currently bound for sunsetting.

With all that in mind we decided to explore alternative solutions for the Rubin-OCS. After exploring a number
of alternatives,6 we decided to adopt Kafka as the message passing system, with AVRO-schema encoding for the
topics schema.7

In the following sections we describe the work done to validate the adoption of Kafka and the initial results
obtained with the system running in one of our test stands. In Section 2 we provide a comparison between
DDS and Kafka in the context of the Rubin-OCS, including a description of their similarities, differences and a
performance review. In Section 3 we describe our initial experience deploying the full system on a test stand,
followed by conclusions in Section 4.

2. COMPARISON BETWEEN DDS AND KAFKA
In this section we present a comparison between DDS and Kafka in the context of the Rubin-OCS.

2.1 Similarities
One of the main similarities between DDS and Kafka, which weighed considerably when we decided to explore
Kafka as a viable replacement, is the fact that both use a publish-subscribe model to transmit and receive
messages. Each message is associated with a “topic”, which can be understood as a communication channel to
exchange a particular type of message.

In both cases, the message transport happens over TCP/IP protocol.
Both DDS and Kafka have support for durability, which is the capability to retrieve historical data (often

referred to as “late-joiner”), and our control system architecture relies heavily on this feature. As a node starts



up, it reads the most recent historical message for each event it subscribes to in order to get the current state of
the system, without having to resort to requesting information to be republished.

2.2 Differences
One of the main distinctions between these two systems is that Kafka is brokered, whereas DDS is distributed,
with no central broker.

With DDS each node discovers the other nodes, using UDP multicast, as the application starts up. Durability
is achieved by the election of a main node which stores all the historical data and distributes them as needed,
switching which node acts as the primary source of data if one fails.

With Kafka each node connects to a broker (and schema registry); there is no discovery phase and no need
for UDP multicast. Kafka writers write messages to the broker, and readers read messages from the broker.
This is a much simpler topology than DDS, but it does require that each message be sent to the broker and
then again to each subscriber, which may result in increased latency. Durability is a natural attribute of the
system as the brokers store messages for distribution by design. Reliability and performance can be increased
by running multiple brokers in parallel, and by using more than one partition for each topic.

2.2.1 Topic Schema and Schema Evolution
In DDS each individual topic has a specific pre-defined schema. In the specification that we are using, DDS does
not support schema evolution. This means that, once a topic is created all further readers and writers must have
the same topic schema. Thus, in order to prevent collisions between old topic schemas and new topic schemas,
we include a hash to the topic name that changes whenever the schema changes. Our high-level software hides
that hash from users. Although this helps us avoid schema collisions in the running system, this causes silent
errors if systems are brought up with different topic schemas. We have managed to avoid this issue by enforcing
a tight deployment procedure that guarantees all systems are running with the same schema version.

Kafka topics on their own have no concept of schema, working more like a communication channel than as a
specific message exchange. However, Kafka ships with a schema register that can be used to register and validate
topic schema. The schema register can be configured with different levels of support for schema evolution and
supports a variety of schema specifications. For the Rubin-OCS we adopted AVRO-schema, in part because it
was already in use in the project but also because it provides great level of flexibility. For the time being we
have only made limited use of all the capabilities provided by an advanced schema evolution mechanism. In the
future we expect to be able to allow systems to update their interfaces more freely, considerably improving the
timeline to deploy new features to the system.

2.2.2 Subtle Differences Between DDS and Kafka
DDS topics have the concept of “quality of service” (QoS) settings. There are many QoS settings, and the
settings must match quite closely between publishers and subscribers of a particular topic, or else the topic
cannot be constructed. This has been a source of much frustration over the years, though we ultimately found
QoS settings that work.

The settings for publishing Kafka topics are far simpler than for DDS, and subscribers have no settings.
Kafka publishers can specify the number of partitions (increasing the number of partitions increases throughput)
and how many ACKs to listen for when writing a message (a tradeoff between latency and reliability).

DDS topics have the concept of “liveness” (one of the many QoS settings), whereas Kafka topics do not.
We have configured our DDS topics such that messages are no longer alive when a CSC exits, in order to avoid
collisions between older and newer versions of topic QoS when upgrading control software. Changes to a topic’s
schema are handled by changing a hash field in the DDS topic’s name, as mentioned in Section 2.2.1. The result
is a completely different topic, as far as DDS is concerned. Until we learned to do this, we frequently ran into a
problem where we could not run a new version of a component, because it could not create its topics due to an
incompatibility with cached “zombie” data. But marking topics as dead when an application exits means that
historical data for a component that have quit is not unavailable from DDS.



Kafka has no concept akin to “liveness”, neither does it need it. In most cases we can simply run the new
application. If a topic’s schema has changed in some incompatible way then we might have to clean up the
broker and schema registry.

2.3 Performance
One of our main concerns in adopting Kafka as a replacement for DDS was to ensure its performance was on
par with our system requirements. Our primary performance requirements are:

• Average latency better than 25ms.

• Latency standard deviation better than 3ms.

• Throughput better than 3 MB/s per topic.

• Consumers must be able to keep up with the data they read.

• Must be able to handle the full system throughput.

A major aspect of adopting Kafka, is that it is already in use in the DDS-based control system to feed data
to the Engineering Facility Database (EFD). We have been operating the system with this architecture from the
very beginning, which allowed us not only to gain experience with Kafka, but also to demonstrate that Kafka is
able to handle the load. Overall, the only aspect we have not investigated is the latency in which messages are
delivered from publishes to subscribers.

Thus for measuring performance we concentrated on the first four items.
We tested performance using three topics:

• MTM1M3 summaryState: One of the smallest topics.

• MTMount trackTarget: The command which we most care about latency. This is the command sent by
the pointing component to the mount with on sky pointing demands. It is this operation that derives the
latency values above.

• MTM1M3 forceActuatorData: The largest topic in the systems, which is also published at 50Hz. This
topic sets the per topic throughput requirement.

For Kafka we performed the tests using two different settings:

• ack=0, meaning the writers will not wait for confirmation from the broker that the topic was received. This
is not considered safe, and is provided purely to show how much latency is due to waiting for acknowledge-
ment.

• ack=1, meaning the writers will wait for 1 acknowledgement from the broker. This is a very common
configuration that is considered safe.

For DDS we used our standard configuration. All tests were executed on a dedicated node with the same
configuration we use for our production environment.

The results are presented in the following sections.



System ACKs Topic Latency (ms)
mean stdev min max

DDS n/a summaryState 1 0 1 1
DDS n/a trackTarget 1 0 1 2
DDS n/a forceActuatorData 5 0 4 7
Kafka 0 summaryState 2 0 2 6
Kafka 0 trackTarget 2 0 2 4
Kafka 0 forceActuatorData 3 0 3 8
Kafka 1 summaryState 2 1 2 27
Kafka 1 trackTarget 2 1 2 25
Kafka 1 forceActuatorData 3 0 3 23

Table 1. Summary of the latency measurements performed with DDS and Kafka for three different topics. For Kafka
we performed latency measurements with two different setups; ack=0 and ack=1. When ack=0 the writer will not wait
for confirmation from the broker that the topic was written before proceeding, whereas with ack=1 it will wait for at
least 1 receive acknowledgement. The three different topics used in this test represents the smallest (summaryState) and
the largest (forceActuatorData) topics in our system, plus an intermediary case that requires the lowest latency possible
(trackTarget).

2.3.1 Latency
Latency was estimated by writing 2000 messages at 20 Hz and measuring the time between when each message
was written and when the reading process received that message. The results are shown in Table 1.

Latency is only an issue for tracking demands, which are sent at approximately 20 Hz and specify position,
velocity, and time. Tracking demands are presently sent at least 50 ms in advance, so it is possible that an
occasional tracking command be late, due to an extreme outlier latency. This should not be a problem, because
our specifications allow us to lose up to three sequential tracking commands, so we can afford to ignore (with a
warning) the occasional late command.

We could also send tracking commands a bit farther in advance. This would decrease the responsiveness to
offsets and new slews by the same small amount.

2.3.2 Write Speed
Write speed was measured by having two separate processes, a writer and a reader, writing and reading messages
as quickly as possible. The test executed until the reader had received 10,000 messages. We decided to use the
number of received messages as the stopping point in order to improve metrics in situations where there is data
loss. The results are shown in Table 2.

System ACKs Topic Write Speed Read Speed Messages lost
messages/s messages/s

DDS n/a summaryState 16,553 16,580 0
DDS n/a trackTarget 13,557 13,577 0
DDS n/a forceActuatorData 1,912 1,492 2,632
Kafka 0 summaryState 4,730 4,739 0
Kafka 0 trackTarget 4,379 4,385 0
Kafka 0 forceActuatorData 3,267 3,262 0
Kafka 1 summaryState 2,065 2,066 0
Kafka 1 trackTarget 1,841 1,842 0
Kafka 1 forceActuatorData 1,652 1,652 0

Table 2. Write speed measurements for DDS and Kafka. As with the latency measurements in Section 2.3.1 the
measurements were performed with 2 different configurations for the Kafka writer and for three different topics. See
Table 1 for more details.

These throughputs all easily meet our requirements.



Note that, alongside write speed and message loss, we also report read speed. It is worth noting that this is
not a measure of maximum read speed, as this is limited by the write speed. In general, as long as the reader
can keep up with the writer, read speed should be approximately the same as write speed. It is not clear to
us why the reported read speed is sometimes slightly higher than write speed. We believe that this might be
because the writers starts shortly before the reader and it might have time to write some messages before the
readers starts to read them. This would cause the reader to quickly read messages previously in the historical
queue and suggests that it is possible to consume messages faster than we can produce it which is, in general, a
desirable property in publish-subscribe systems.

The fact that some DDS messages were lost shows that our DDS testing harness can write large messages
faster than it can read them. This is not a cause for concern, as long as we keep up with the actual rate at which
messages are written at operational regimes (e.g. 50Hz).

3. SYSTEM WIDE DEPLOYMENT
Following the encouraging performance results we obtained with Kafka, we started a system-wide adoption
project. We commenced by updating our high level Python library to replace DDS with Kafka. During this
period we wanted to maintain compatibility between both versions of the library to ease the transition. Overall,
the worked pretty well and we are able to provide compatible versions of the library that can be seamlessly
swapped.

Although the majority of our components are written using the high level Python library, some of the most
critical components are written in C++ and Java, namely; the pointing component, the M1M3 support system
(both in C++) and the cameras control system (in Java). The second phase of the process was then to update
our C++ and Java components.

Before we can finally run the system at the Summit, driving the observatory systems, we need to ensure it
works as expected. With all our systems able to run with Kafka, we made a full deployment of all the components
in one of our Test Stands. This is possible because all our systems are developed with a simulation mode that
closely emulate the actual component behavior. We regularly use our components in simulation mode on our
Test Stands for integration tests and for testing operations before deploying them at the Summit. In Figure 1,
we show a screenshot of the user interface of our system running Kafka.

Figure 1. Screenshot of some of the main views of the LSST Operator Visualization Environment (LOVE) for the system
running on Kafka at the Tucson Test Stand (TTS). The left hand panel shows the state of all the components currently
running; green means the system is in Enabled state which is when they are operational, yellow systems are in Standby
which means the system is alive but not able to perform any action and blue means the system is in Disable which means
the system is configured and ready to operate but will not perform any action. Two states are not represented; Offline and
Fault, which are states for components that are not running or when they experience unexpected behavior. The middle
panel shows the view of the Simonyi telescope status, showing the current position of the telescope and the state of the
different axis. The right hand panel shows the same view for the Auxiliary Telescope.



4. CONCLUSIONS
We have demonstrated the feasibility of replacing DDS with Kafka as the middleware technology for the Rubin-
OCS. Our initial latency and throughput benchmarks have given us confidence in implementing the update,
and our Service Abstraction Layer facilitated the overall process. We have started to execute more system-
wide testing on one of our test stands, which have allowed us to gain more confidence and experience with the
system. Migration to the new Kafka-based system is expected to happen in the near future once testing has
concluded and the commissioning schedule allows it. Once migration is complete we plan to take advantage of
schema evolution capabilities enabled by Kafka to improve rollout of components interfaces, reducing some of
the burden on configuration management imposed by DDS.

ACKNOWLEDGMENTS
This material is based upon work supported in part by the National Science Foundation through Cooperative
Agreement AST-1258333 and Cooperative Support Agreement AST-1202910 managed by the Association of
Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-
76SF00515 with the SLAC National Accelerator Laboratory managed by Stanford University. Additional Rubin
Observatory funding comes from private donations, grants to universities, and in-kind support from LSSTC
Institutional Members.

REFERENCES
[1] Buyya, R., Vecchiola, C., and Selvi, S. T., “Chapter 2 - principles of parallel and distributed computing,” in

[Mastering Cloud Computing ], Buyya, R., Vecchiola, C., and Selvi, S. T., eds., 29–70, Morgan Kaufmann,
Boston (2013). https://www.sciencedirect.com/science/article/pii/B9780124114548000024.

[2] Ivezić, Z. et al., “LSST: From Science Drivers to Reference Design and Anticipated Data Products,” ApJ 873,
111 (Mar 2019). DOI: https://doi.org/10.3847/1538-4357/ab042c.

[3] Mills, D., Schumacher, G., and Lotz, P., “LSST communications middleware implementation,” in [Ground-
based and Airborne Telescopes VI ], Hall, H. J., Gilmozzi, R., and Marshall, H. K., eds., Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series 9906, 99065C (July 2016). DOI: https://
doi.org/10.1117/12.2233099.

[4] Mills, D. and Schumacher, G., “Middleware design and implementation for LSST,” in [Software and Cyber-
infrastructure for Astronomy ], Radziwill, N. M. and Bridger, A., eds., Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series 7740, 77402C (July 2010). DOI: https://doi.org/10.1117/12.
857233.

[5] Maartens, D. S. and Brink, J. D., “Selecting a simple, natively implemented middleware solution for the
SALT control system,” in [Software and Cyberinfrastructure for Astronomy V ], Guzman, J. C. and Ibsen, J.,
eds., 10707, 107070E, International Society for Optics and Photonics, SPIE (2018). https://doi.org/10.
1117/12.2313106.

[6] Ribeiro, T., Clements, A., Mills, D., Reuter, M., and Owen, R., “The past, present and future of the Vera
Rubin Observatory Control System Middleware,” (August 2022). Vera C. Rubin Observatory TSTN-028,
https://tstn-028.lsst.io/.

[7] Owen, R., “Exploring Kafka for Telescope Control,” (April 2022). Vera C. Rubin Observatory TSTN-033,
https://tstn-033.lsst.io/.

https://www.sciencedirect.com/science/article/pii/B9780124114548000024
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.1117/12.2233099
https://doi.org/10.1117/12.2233099
https://doi.org/10.1117/12.857233
https://doi.org/10.1117/12.857233
https://doi.org/10.1117/12.2313106
https://doi.org/10.1117/12.2313106
https://tstn-028.lsst.io/
https://tstn-033.lsst.io/

	INTRODUCTION
	Comparison between DDS and Kafka
	Similarities
	Differences
	Topic Schema and Schema Evolution
	Subtle Differences Between DDS and Kafka

	Performance
	Latency
	Write Speed


	System Wide Deployment
	Conclusions

